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Several transformations of the singular ( IArj = 0) n x n polynomial matrix eigenvalue 
problem (A,I’+A,-,I’-‘+ ... +A,I+A,)x=O of degree r, where A, has k<n nonzero 
rows, are described. The transformed problems are either of degree one, order r(n- I)+k, 
and usually (in a sense made precise) nonsingular, or of degree r- 1, order n+k, and 
singular. For a wide range of k, n, and r, the transformed problems can be solved more 
efficiently than the original problem of degree r and order n. 0 1988 Academic Press, Inc. 

I. INTRODUCTION 

The problem of determining the eigenvalues i and eigenvectors x of the 
polynomial matrix eigenvalue problem 

(A,I’+A,-,A’-‘+ ... +A,3,+A,)x=Q (11 

arises in many contexts and has been previously discussed by many authors [l--93. 
The square matrices A,, . . . . A, have order n, and Y is said to be the degree of (l), 
which we take to be at least two. 

In the case where all of the eigenvalues of (1) are needed, the standard proce 
is to transform (1) into an order m linear matrix eigenvalue problem 

(BA+C)x= (21 

as discussed by several authors [l, 5-81. Recently, Bridges and Morris [IS] have 
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shown how (1) with IA,/ =0 and lAoI #O can be recast as a nonsingular problem 
of order n in the form of (1). 

As discussed in [9], (1) frequently arises from the discretization of an ordinary 
differential equation eigenvalue problem. Bridges and Morris consider the case in 
which, owing to the appearance of a higher power of the eigenvalue in the differen- 
tial equation than in some or all of the boundary conditions, A,. has only a few 
rows of zeros. They present several transformations of (1) which are appropriate to 
the case where the number (n -k) of zero rows in A, is small. One method trans- 
forms (1) to a singular problem of degree one and order in [cf. (2)], and another 
transformation converts (1) to a nonsingular (if (A,,1 # 0) problem of degree r and 
order yt. The former transformation was discussed earlier by Peters and Wilkinson 
PI. 

There are, however, a number of physical problems in which (1) results from the 
discretization of an ordinary differential equation eigenvalue problem and where, 
owing to the appearance of a higher power of the eigenvalue in the boundary 
conditions than in the differential equation itself, the matrix A, has only a few 
nonzero rows [9-131. A typical example is the Orr-Sommerfeld equation 

with boundary conditions 

f$(-l)=dfj(-l)/dz=O WWc) 

(c- l)d2&0)/dz2+ [a2(c- l)-21 d(O)=0 WI 

(2 cot p + a2SR)qs(0) + [R(c - 1)2 i- 3ia(c - 1)] dCj(O)/dz 

- i(c - 1) &(O)/dz3 = 0 (W 

governing the linear stability of a viscous fluid flowing with velocity profile U(z) 
down a plane inclined at an angle p. Here, the wave speed c is the eigenvalue to be 
computed for fixed values of the wavenumber CC, Reynolds number R, and surface 
tension parameter S [ 111. Discretization using either finite difference or spectral 
techniques gives a matrix eigenvalue problem 

(D2i12+D11+D,,)x=0, (4) 

where D, has only one nonzero row, regardless of the number of grid points or trial 
functions used in the discretization. 

The standard transformations of (1) with jArI = 0 produce either a singular 
eigenvalue problem of degree one and order r-n [S], or if lAoI # 0, either a 
nonsingular problem of degree r and order it or a nonsingular problem of degree 
one and order rn [S, 91. 

In what follows, we present transformations of (1) into versions of (1) and (2) 
that, by use of existing techniques, can be solved more efficiently than either the 
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original version of (1) or the versions of (2) produced by previous transformation 
methods. We discuss the quadratic case (4) in some detail in Section II an 
the results for the more general case of (1) in Section III. 

II. QUADRATIC CASE (r= 2) 

More complicated problems than (3a)-(3e) (see [ 121) generally give rise to 
matrices A2 in (1) with more than one nonzero row, so in the sequel we will 
consider the case where k (1 d k -c n) of the rows of 

We begin by observing that when A2 has k nonzero rows, the maximum 
degree of the determinantal polynomial of 

IA&* + A, J. + A,1 

is II + k. It thus seems reasonable to seek a transformation of (4) into a no~si~g~Iar 
(n + k)th order version of (2). 

We partition A, as 

A,= 

where b and 0, are k x n nonzero and (n-k) x n zero matrices, respectively. 
define a k x 1 vector 

y=,Jbx (5) 

and rewrite (1) as 

3, 02 il +A,,Xx+A,x= 
-- 

Y 

where 0, is an (n - k)-vector of zeros. We observe that (5) and (6) are linear in pl., 
so we can combine them to get 
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where O3 is an (n - k) x k matrix of zeros, and I, is the kth order identity matrix. 
Now (7) can be rewritten as 

(FL/l+ F,).V=O, 

where 

F, = 

F. = 

v= cx YK 

,--- 
’ 1, A---- 

b / 04 

--_--- ,---- 

0; ; -I, 

(8) 

and O4 and 0, are, respectively, k x k and n x k matrices of zeros. 
Thus, (8) is of the form (2), has order n + k < 2n, and will be singular only if the 

n x n matrix 

P= 

is singular, where M is an (n -k) x n matrix consisting of the first n -k rows of Ai. 
Thus, P [and hence (8)] will be singular only for some set of pairs of matrices Ai 
and b of measure zero. ‘In contrast, the standard transformation of (4) into (2) for 
iA21 =0 has final order 2n and is always singular. 

III. GENERAL CASE (t-2 3) 

In the general case (Y 2 3), we consider two approaches, each of which yields a 
result that reduces to (8) when Y = 2. The first approach leads to an eigenvalue 
problem of degree one and order (Y - 1) n + k, while the second yields a problem of 
degree r - 1 and order n + k. 
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IIIa. Transformation to an Eigenvalue Problem of Degree One and Order 
(r- 1)nfk 

We begin by defining x = yO and writing 

KY, = Yj, l<j<r--2, 

with each yj an n-vector. We can then write (1) as 

where 
yr~l=A’-‘byo=hby,-,. (ill 

We then combine (9)-(11) to obtain 

(G,A+G,)W=O, (12) 

where W = [yO y1 . . ‘yrp2 yr_l]risan [(r-l)nik]xl col~~~vecto~a~~ 

I n(r-2) 

and 
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where I,+,, is the (Y- 2)n x (I-2)n identity matrix, H is an (Y- 2)n x (Y- 1)n 
matrix with elements 

j-i=It, 
j-ifn, 

and 0, and O7 are, respectively, (Y - 2)n x (n + k) and (Y - 2)n x k matrices of zeros. 
As before, Gi is singular only for a set of pairs of A,- I and b of measure zero, 

i.e., only when the n x n matrix 

E= 

i 

J 

----- 
b 

1 

is singular, where J is an (n -k) x n matrix consisting of the first n -k rows of 
A,- i. The order of (12) is (Y - 1)~ + k, which again corresponds to the maximum 
degree of the characteristic polynomial of (1). 

IIIb. Transformation to an Eigenvalue Problem of Degree r - 1 and Order (n + k) 

A transformation of (1) to another form of (1) with degree r - 1 and order 
(n + k) is suggested by the transformations presented in Sections II and IIIa. We 
define y as in (5) and rewrite (1) as 

Ar-1 + (A,_,i’-‘+ .a. +A,;1+A,)x=O. (13) 

We define V as in Section II, and combine (5) and (13) to obtain 

(L,-,I’-‘+ L,-,r2+ ... + L,I+ L,)V=O, 

where 

L,-I= 

I . 
I 
; 03 

4-1 , 
I-- 
I 1, ------- -t-- 

0: I 04. 

(14) 
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and 

Thus, (14) is an eigenvalue problem of degree r - 1 and order n + k, which can be 
solved using the techniques developed by Bridges and Morris [9]. The advantage 
of (14) over the originial form (1) is the reduction of degree at the expense of 
increasing the order from n to (n + k). 

IV. COMPARISON TO OTHER METHODS 

The transformations described herein employ only store and fetch operations, so 
that their efficiencies can be judged by directly comparing the cost of solving the 
original and transformed eigenvalue problems. 

For the comparison, we consider two methods for solving the original and trans- 
formed eigenvalue problems [9]: (1) transformation to a matrix eige~v~l~~ 
problem of degree one (e.g., the companion matrix), with solution by the 
algorithm, and (2) direct solution of a polynomial matrix eigenvalue ~robIem by 
the Bezout factorization, as described by Bridges and Morris. 

For method (1 ), the operations count is O(M3), where A4 is the order of the first 
degree matrix eigenvalue problem. For the companion matrix transformation, we 
have M= rn. Thus, transformation to a problem of degree one and 
M = (r - 1)n + k < rn is always preferred over the companion matrix tr 
mation. Transformation to an (Y - 1)th degree problem of order n + k, 
by the companion matrix transformation, is competitive only for r = 2, when 
M=(r-l)(n+k)=(r-l)n+k. 
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For method (2), the operations count appears to be O(R2N3), where R32 and 
N are the degree and order, respectively, of the polynomial matrix eigenvalue 
problem to be solved uiu the Bezout factorization. The ratio of the operations 
counts for the (r - 1)th degree problem of order yt + k and the original problem is 
then 

Thus, the transformation of Section IIIb should be performed prior to application 
of the direct solution technique of Bridges and Morris when 
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